Sample Preparation
Homogenization
Heating and Mixing
Electrophoresis and Blotting
Polyacrylamide Gel Electrophoresis
Agarose Gel Electrophoresis
Western Blotting
Power Supplies
PCR & qPCR Thermal Cycler
Thermal Cycler (PCR)
Real-time Thermal Cycler (qPCR)
PCR Workstations & Cabinets
UVP BioImaging Systems
Molecular Spectroscopy
Lab Equipment
Ultraviolet Products
Hybridization Ovens
UVP Incubator
UV Crosslinkers
UVP Benchtop Transilluminators
Thermal Mixers
Electrophoresis & Blotting
Thermostats
View All
Fume hood
Laminar Airflow
Biosafety Cabinet
Autoclave
Centrifuge
pH Meter
Shaker & Mixer
Orbital Shaking Incubator
BOD Incubator
Heating Oven
Water Purification System
Aermax - Air Purification
Medical Oxygen Concetrators
Hygiene Solution
-150°C Cryogenic Freezer
-86°C Ultra Low Temp Freezer
-40°C Low Temp Freezer
-18 ~ -25°C Biomedical Freezer
-20°C Biomedical Freezer
4° ± 1°C Blood Bank Refrigerators
2~8°C Pharma Refrigerators
2~8°C ICE Lined Refrigerators
-25°C ~ + 4°C Mobile Freezer/Collers
20~24°C Blood Platelet Incubators
Ice Machines
Coldrooms
Mortuary Chambers
Raman spectroscopy is one of the popular laboratory techniques used for the analysis of molecular structure. It is considered complementary to infrared spectroscopy. Indian Physicist Chandrasekhara Venkata Raman identified the Raman effect in 1928, on the basis of which, Raman spectroscopy is operated. Raman imaging and Raman analysis are also the terms used for Raman spectroscopy. This write-up elaborates on the principle and basis on which Raman spectroscopy is operated..
Principle Basics
Conclusion
In this article, a short introduction has been given for Raman spectroscopy. Basic principles are discussed. Rayleigh scattering and Raman scattering have been explained. The concept of Stokes scattering and anti-Stokes scattering have been provided. The Raman effect has been detailed.